Short Research Article

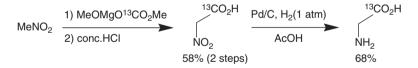
Synthesis of isotope-labelled [1- 13 C]-amino acids from 13 CO $_2$ [†]

TAKAYUKI NAKAJIMA, KAZUKI NAKAYAMA and ISAO SHIMIZU*

Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan Received 8 July 2006; Revised 2 March 2007; Accepted 30 March 2007

Keywords: isotope-labelled [1-¹³C]-amino acids; ¹³CO₂; asymmetric hydrogenation

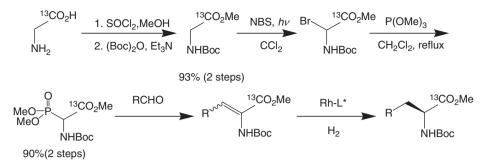
Introduction

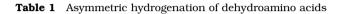

Much attention has been paid to the application of stable isotope-labelled ¹³C-amino acids to various biological studies, such as metabolism, the diagnosis of disease, and biosynthetic studies and the structural analysis of peptides and proteins, because ¹³C atom is analyzed in multiple ways as IR, NMR and mass spectroscopy.¹ We present here a convenient method for preparation of $[1-^{13}C]$ -amino acids by fixation of readily available ¹³CO₂ by means of methyl magnesium carbonate (MMC).

Results and discussion

 $^{13}\text{C-MMC}$ was prepared from Mg(OMe)_2 and $^{13}\text{CO}_2$ in DMSO. 2 The reaction of nitromethane and $^{13}\text{C-MMC},$

followed by hydroxylation gave $[1^{-13}C]$ -nitroacetic acid in 58% yield, which was subjected to hydrogenation with H₂ on Pd/C to afford $[1^{-13}C]$ -glycine in 68% yield. (Scheme 1)


Synthesis of optically active amino acids from $[1^{-13}C]$ -glycine was also studied. Thus, $[1^{-13}C]$ -glycine was converted into 2-(methoxyphosphono)glycine derivative,³ which was subjected to the Horner-Wadsworth–Emmons reaction with several aldehydes to afford corresponding dehydroamino acid derivatives with high *Z* selectivity⁴ (Scheme 2). Rhodium catalyzed-asymmetric hydrogenation of dehydroamino acids gave $[1^{-13}C]$ -amino acids with high ee (Table 1).⁵


Scheme 1

^{*}Correspondence to: Isao Shimizu, Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan. E-mail: shimizui@waseda.jp [†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

Scheme 2

		, <i>S</i>)-Et-DuPHOS-Rh(COD)] ⁺ OTf [−] (1 mo	DI%) R H 13CO ₂ Me NHBoc	
	R NHBoc	H ₂ (5.0 atm), MeOH, 50 °C		
Entry	R	Time (h)	Yield (%)	ee (%)
1	C C	22	99	92
2	MeO	16	98	94
3	N Boc	22	99	94
4	Н	26	98	96
5	Y'r's	22	99	93
6	BnO J O	19	98	94
7	BocHN、옷	19	97	93
8	Boc ₂ N	18	99	92

REFERENCES

- (a) Mason AJ, Siarheyeva A, Haase W, Lorch M, Veen H, Glaubitz C. FEBS Lett 2004; **568**: 117; (b) Löhr F, Rogov VV, Shi M, Bernhard F, Dötsch V. J Biomol NMR 2002; **23**: 333; (c) Persson J, Näsholm T. Physiol Plant 2001; **113**: 352; (d) Torizawa T, Ono AM, Terauchi T, Kainosho M. J Am Chem Soc 2005; **127**: 12620.
- Finkbeiner HM, Stiles M. J Am Chem Soc 1963; 85: 616.
- 3. Kober R, Steglich W. Liebigs Ann Chem 1983; 599.
- Schmidt U, Griesser H, Leitenberger V, Lieberknecht A, Mangold R, Meyer R, Riedl B. Synthesis 1992; 487.
- Burk MJ, Feaster JE, Nugent A, Harlow RL. J Am Chem Soc 1993; 115: 10125.

Copyright © 2007 John Wiley & Sons, Ltd.